
pytest-cov
Release 2.7.0

May 03, 2019

Contents

1 Overview 3
1.1 Installation . 3
1.2 Usage . 4
1.3 Documentation . 4
1.4 Coverage Data File . 4
1.5 Limitations . 4
1.6 Acknowledgements . 5

2 Configuration 7
2.1 Caveats . 7
2.2 Reference . 8

3 Reporting 9

4 Debuggers and PyCharm 11

5 Distributed testing (xdist) 13
5.1 “load” mode . 13
5.2 “each” mode . 14

6 Subprocess support 15
6.1 If you use multiprocessing.Pool . 15
6.2 If you use multiprocessing.Process . 16
6.3 If you got custom signal handling . 16
6.4 If you use Windows . 17

7 Tox 19

8 Plugin coverage 21

9 Markers and fixtures 23
9.1 Markers . 23
9.2 Fixtures . 23

10 Changelog 25
10.1 2.7.0 (2019-05-03) . 25
10.2 2.6.1 (2019-01-07) . 25
10.3 2.6.0 (2018-09-03) . 25

i

10.4 2.5.1 (2017-05-11) . 26
10.5 2.5.0 (2017-05-09) . 26
10.6 2.4.0 (2016-10-10) . 26
10.7 2.3.1 (2016-08-07) . 26
10.8 2.3.0 (2016-07-05) . 27
10.9 2.2.1 (2016-01-30) . 27
10.10 2.2.0 (2015-10-04) . 27
10.11 2.1.0 (2015-08-23) . 27
10.12 2.0.0 (2015-07-28) . 27
10.13 1.8.2 (2014-11-06) . 28

11 Authors 29

12 Releasing 31

13 Contributing 33
13.1 Bug reports . 33
13.2 Documentation improvements . 33
13.3 Feature requests and feedback . 33
13.4 Development . 34

14 Indices and tables 35

ii

pytest-cov, Release 2.7.0

Contents:

Contents 1

pytest-cov, Release 2.7.0

2 Contents

CHAPTER 1

Overview

docs
tests

package

This plugin produces coverage reports. Compared to just using coverage run this plugin does some extras:

• Subprocess support: you can fork or run stuff in a subprocess and will get covered without any fuss.

• Xdist support: you can use all of pytest-xdist’s features and still get coverage.

• Consistent pytest behavior. If you run coverage run -m pytest you will have slightly different sys.
path (CWD will be in it, unlike when running pytest).

All features offered by the coverage package should work, either through pytest-cov’s command line options or through
coverage’s config file.

• Free software: MIT license

1.1 Installation

Install with pip:

pip install pytest-cov

For distributed testing support install pytest-xdist:

pip install pytest-xdist

3

pytest-cov, Release 2.7.0

1.1.1 Upgrading from ancient pytest-cov

pytest-cov 2.0 is using a new .pth file (pytest-cov.pth). You may want to manually remove the older
init_cov_core.pth from site-packages as it’s not automatically removed.

1.1.2 Uninstalling

Uninstall with pip:

pip uninstall pytest-cov

Under certain scenarios a stray .pth file may be left around in site-packages.

• pytest-cov 2.0 may leave a pytest-cov.pth if you installed without wheels (easy_install, setup.py
install etc).

• pytest-cov 1.8 or older will leave a init_cov_core.pth.

1.2 Usage

pytest --cov=myproj tests/

Would produce a report like:

-------------------- coverage: ... ---------------------
Name Stmts Miss Cover
--
myproj/__init__ 2 0 100%
myproj/myproj 257 13 94%
myproj/feature4286 94 7 92%
--
TOTAL 353 20 94%

1.3 Documentation

http://pytest-cov.rtfd.org/

1.4 Coverage Data File

The data file is erased at the beginning of testing to ensure clean data for each test run. If you need to combine the
coverage of several test runs you can use the --cov-append option to append this coverage data to coverage data
from previous test runs.

The data file is left at the end of testing so that it is possible to use normal coverage tools to examine it.

1.5 Limitations

For distributed testing the slaves must have the pytest-cov package installed. This is needed since the plugin must be
registered through setuptools for pytest to start the plugin on the slave.

4 Chapter 1. Overview

http://pytest-cov.rtfd.org/

pytest-cov, Release 2.7.0

For subprocess measurement environment variables must make it from the main process to the subprocess. The python
used by the subprocess must have pytest-cov installed. The subprocess must do normal site initialisation so that the
environment variables can be detected and coverage started.

1.6 Acknowledgements

Whilst this plugin has been built fresh from the ground up it has been influenced by the work done on pytest-coverage
(Ross Lawley, James Mills, Holger Krekel) and nose-cover (Jason Pellerin) which are other coverage plugins.

Ned Batchelder for coverage and its ability to combine the coverage results of parallel runs.

Holger Krekel for pytest with its distributed testing support.

Jason Pellerin for nose.

Michael Foord for unittest2.

No doubt others have contributed to these tools as well.

1.6. Acknowledgements 5

pytest-cov, Release 2.7.0

6 Chapter 1. Overview

CHAPTER 2

Configuration

This plugin provides a clean minimal set of command line options that are added to pytest. For further control of
coverage use a coverage config file.

For example if tests are contained within the directory tree being measured the tests may be excluded if desired by
using a .coveragerc file with the omit option set:

pytest --cov-config=.coveragerc
--cov=myproj
myproj/tests/

Where the .coveragerc file contains file globs:

[run]
omit = tests/*

For full details refer to the coverage config file documentation.

Note that this plugin controls some options and setting the option in the config file will have no effect. These include
specifying source to be measured (source option) and all data file handling (data_file and parallel options).

If you wish to always add pytest-cov with pytest, you can use addopts under pytest or tool:pytest section.
For example:

[tool:pytest]
addopts = --cov=<project-name> --cov-report html

2.1 Caveats

A unfortunate consequence of coverage.py’s history is that .coveragerc is a magic name: it’s the default file but it
also means “try to also lookup coverage configuration in tox.ini or setup.cfg”.

In practical terms this means that if you have your coverage configuration in tox.ini or setup.cfg it is paramount
that you also use --cov-config=tox.ini or --cov-config=setup.cfg.

7

https://coverage.readthedocs.io/en/latest/config.html

pytest-cov, Release 2.7.0

You might not be affected but it’s unlikely that you won’t ever use chdir in a test.

2.2 Reference

The complete list of command line options is:

--cov=PATH Measure coverage for filesystem path. (multi-allowed)

--cov-report=type Type of report to generate: term, term-missing, annotate, html, xml
(multi-allowed). term, term- missing may be followed by ”:skip-
covered”. annotate, html and xml may be followed by ”:DEST”
where DEST specifies the output location. Use –cov-report= to not
generate any output.

--cov-config=path Config file for coverage. Default: .coveragerc

--no-cov-on-fail Do not report coverage if test run fails. Default: False

--no-cov Disable coverage report completely (useful for debuggers). Default:
False

--cov-fail-under=MIN Fail if the total coverage is less than MIN.

--cov-append Do not delete coverage but append to current. Default: False

--cov-branch Enable branch coverage.

8 Chapter 2. Configuration

CHAPTER 3

Reporting

It is possible to generate any combination of the reports for a single test run.

The available reports are terminal (with or without missing line numbers shown), HTML, XML and annotated source
code.

The terminal report without line numbers (default):

pytest --cov-report term --cov=myproj tests/

-------------------- coverage: platform linux2, python 2.6.4-final-0 -----------------
→˓----
Name Stmts Miss Cover
--
myproj/__init__ 2 0 100%
myproj/myproj 257 13 94%
myproj/feature4286 94 7 92%
--
TOTAL 353 20 94%

The terminal report with line numbers:

pytest --cov-report term-missing --cov=myproj tests/

-------------------- coverage: platform linux2, python 2.6.4-final-0 -----------------
→˓----
Name Stmts Miss Cover Missing
--
myproj/__init__ 2 0 100%
myproj/myproj 257 13 94% 24-26, 99, 149, 233-236, 297-298, 369-370
myproj/feature4286 94 7 92% 183-188, 197
--
TOTAL 353 20 94%

The terminal report with skip covered:

9

pytest-cov, Release 2.7.0

pytest --cov-report term:skip-covered --cov=myproj tests/

-------------------- coverage: platform linux2, python 2.6.4-final-0 -----------------
→˓----
Name Stmts Miss Cover
--
myproj/myproj 257 13 94%
myproj/feature4286 94 7 92%
--
TOTAL 353 20 94%

1 files skipped due to complete coverage.

You can use skip-covered with term-missing as well. e.g. --cov-report
term-missing:skip-covered

These three report options output to files without showing anything on the terminal:

pytest --cov-report html
--cov-report xml
--cov-report annotate
--cov=myproj tests/

The output location for each of these reports can be specified. The output location for the XML report is a file. Where
as the output location for the HTML and annotated source code reports are directories:

pytest --cov-report html:cov_html
--cov-report xml:cov.xml
--cov-report annotate:cov_annotate
--cov=myproj tests/

The final report option can also suppress printing to the terminal:

pytest --cov-report= --cov=myproj tests/

This mode can be especially useful on continuous integration servers, where a coverage file is needed for subsequent
processing, but no local report needs to be viewed. For example, tests run on Travis-CI could produce a .coverage file
for use with Coveralls.

10 Chapter 3. Reporting

CHAPTER 4

Debuggers and PyCharm

(or other IDEs)

When it comes to TDD one obviously would like to debug tests. Debuggers in Python use mostly the sys.settrace
function to gain access to context. Coverage uses the same technique to get access to the lines executed. Coverage
does not play well with other tracers simultaneously running. This manifests itself in behaviour that PyCharm might
not hit a breakpoint no matter what the user does. Since it is common practice to have coverage configuration in the
pytest.ini file and pytest does not support removeopts or similar the –no-cov flag can disable coverage completely.

At the reporting part a warning message will show on screen:

Coverage disabled via --no-cov switch!

11

pytest-cov, Release 2.7.0

12 Chapter 4. Debuggers and PyCharm

CHAPTER 5

Distributed testing (xdist)

5.1 “load” mode

Distributed testing with dist mode set to load will report on the combined coverage of all slaves. The slaves may be
spread out over any number of hosts and each slave may be located anywhere on the file system. Each slave will have
its subprocesses measured.

Running distributed testing with dist mode set to load:

pytest --cov=myproj -n 2 tests/

Shows a terminal report:

-------------------- coverage: platform linux2, python 2.6.4-final-0 -----------------
→˓----
Name Stmts Miss Cover
--
myproj/__init__ 2 0 100%
myproj/myproj 257 13 94%
myproj/feature4286 94 7 92%
--
TOTAL 353 20 94%

Again but spread over different hosts and different directories:

pytest --cov=myproj --dist load
--tx ssh=memedough@host1//chdir=testenv1
--tx ssh=memedough@host2//chdir=/tmp/testenv2//python=/tmp/env1/bin/python
--rsyncdir myproj --rsyncdir tests --rsync examples
tests/

Shows a terminal report:

13

pytest-cov, Release 2.7.0

-------------------- coverage: platform linux2, python 2.6.4-final-0 -----------------
→˓----
Name Stmts Miss Cover
--
myproj/__init__ 2 0 100%
myproj/myproj 257 13 94%
myproj/feature4286 94 7 92%
--
TOTAL 353 20 94%

5.2 “each” mode

Distributed testing with dist mode set to each will report on the combined coverage of all slaves. Since each slave is
running all tests this allows generating a combined coverage report for multiple environments.

Running distributed testing with dist mode set to each:

pytest --cov=myproj --dist each
--tx popen//chdir=/tmp/testenv3//python=/usr/local/python27/bin/python
--tx ssh=memedough@host2//chdir=/tmp/testenv4//python=/tmp/env2/bin/python
--rsyncdir myproj --rsyncdir tests --rsync examples
tests/

Shows a terminal report:

-- coverage ------------------------------------
→˓----

platform linux2, python 2.6.5-final-0
platform linux2, python 2.7.0-final-0

Name Stmts Miss Cover
--
myproj/__init__ 2 0 100%
myproj/myproj 257 13 94%
myproj/feature4286 94 7 92%
--
TOTAL 353 20 94%

14 Chapter 5. Distributed testing (xdist)

CHAPTER 6

Subprocess support

Normally coverage writes the data via a pretty standard atexit handler. However, if the subprocess doesn’t exit on its
own then the atexit handler might not run. Why that happens is best left to the adventurous to discover by waddling
though the Python bug tracker.

pytest-cov supports subprocesses and multiprocessing, and works around these atexit limitations. However, there are
a few pitfalls that need to be explained.

6.1 If you use multiprocessing.Pool

pytest-cov automatically registers a multiprocessing finalizer. The finalizer will only run reliably if the pool is closed.
Closing the pool basically signals the workers that there will be no more work, and they will eventually exit. Thus one
also needs to call join on the pool.

If you use multiprocessing.Pool.terminate or the context manager API (__exit__ will just call
terminate) then the workers can get SIGTERM and then the finalizers won’t run or complete in time. Thus you
need to make sure your multiprocessing.Pool gets a nice and clean exit:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == '__main__':
p = Pool(5)
try:

print(p.map(f, [1, 2, 3]))
finally:

p.close() # Marks the pool as closed.
p.join() # Waits for workers to exit.

If you must use the context manager API (e.g.: the pool is managed in third party code you can’t change) then you can
register a cleaning SIGTERM handler like so:

15

pytest-cov, Release 2.7.0

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == '__main__':
try:

from pytest_cov.embed import cleanup_on_sigterm
except ImportError:

pass
else:

cleanup_on_sigterm()

with Pool(5) as p:
print(p.map(f, [1, 2, 3]))

6.2 If you use multiprocessing.Process

There’s similar issue when using the Process objects. Don’t forget to use .join():

from multiprocessing import Process

def f(name):
print('hello', name)

if __name__ == '__main__':
try:

from pytest_cov.embed import cleanup_on_sigterm
except ImportError:

pass
else:

cleanup_on_sigterm()

p = Process(target=f, args=('bob',))
try:

p.start()
finally:

p.join() # necessary so that the Process exists before the test suite exits
→˓(thus coverage is collected)

6.3 If you got custom signal handling

pytest-cov 2.6 has a rudimentary pytest_cov.embed.cleanup_on_sigterm you can use to register a
SIGTERM handler that flushes the coverage data.

pytest-cov 2.7 adds a pytest_cov.embed.cleanup_on_signal function and changes the implementation to
be more robust: the handler will call the previous handler (if you had previously registered any), and is re-entrant (will
defer extra signals if delivered while the handler runs).

For example, if you reload on SIGHUP you should have something like this:

import os
import signal

16 Chapter 6. Subprocess support

pytest-cov, Release 2.7.0

def restart_service(frame, signum):
os.exec(...) # or whatever your custom signal would do

signal.signal(signal.SIGHUP, restart_service)

try:
from pytest_cov.embed import cleanup_on_signal

except ImportError:
pass

else:
cleanup_on_signal(signal.SIGHUP)

Note that both cleanup_on_signal and cleanup_on_sigterm will run the previous signal handler.

Alternatively you can do this:

import os
import signal

try:
from pytest_cov.embed import cleanup

except ImportError:
cleanup = None

def restart_service(frame, signum):
if cleanup is not None:

cleanup()

os.exec(...) # or whatever your custom signal would do
signal.signal(signal.SIGHUP, restart_service)

6.4 If you use Windows

On Windows you can register a handler for SIGTERM but it doesn’t actually work. It will work if you
os.kill(os.getpid(), signal.SIGTERM) (send SIGTERM to the current process) but for most intents and purposes that’s
completely useless.

Consequently this means that if you use multiprocessing you got no choice but to use the close/join pattern as described
above. Using the context manager API or terminate won’t work as it relies on SIGTERM.

However you can have a working handler for SIGBREAK (with some caveats):

import os
import signal

def shutdown(frame, signum):
your app's shutdown or whatever

signal.signal(signal.SIGBREAK, shutdown)

try:
from pytest_cov.embed import cleanup_on_signal

except ImportError:
pass

else:
cleanup_on_signal(signal.SIGBREAK)

6.4. If you use Windows 17

pytest-cov, Release 2.7.0

The caveats being roughly:

• you need to deliver signal.CTRL_BREAK_EVENT

• it gets delivered to the whole process group, and that can have unforeseen consequences

18 Chapter 6. Subprocess support

https://stefan.sofa-rockers.org/2013/08/15/handling-sub-process-hierarchies-python-linux-os-x/

CHAPTER 7

Tox

When using tox you can have ultra-compact configuration - you can have all of it in tox.ini:

[tox]
envlist = ...

[tool:pytest]
...

[coverage:paths]
...

[coverage:run]
...

[coverage:report]
..

[testenv]
commands = ...

An usual problem users have is that pytest-cov will erase the previous coverage data by default, thus if you run tox
with multiple environments you’ll get incomplete coverage at the end.

To prevent this problem you need to use --cov-append. It’s still recommended to clean the previous coverage data
to have consistent output. A tox.ini like this should be enough for sequential runs:

[tox]
envlist = clean,py27,py36,...

[testenv]
commands = pytest --cov --cov-append --cov-report=term-missing ...
deps =

pytest
pytest-cov

19

https://tox.readthedocs.io/

pytest-cov, Release 2.7.0

[testenv:clean]
deps = coverage
skip_install = true
commands = coverage erase

For parallel runs we need to set some dependencies and have an extra report env like so:

[tox]
envlist = clean,py27,py36,report

[testenv]
commands = pytest --cov --cov-append --cov-report=term-missing
deps =

pytest
pytest-cov

depends =
{py27,py36}: clean
report: py27,py36

[testenv:report]
deps = coverage
skip_install = true
commands =

coverage report
coverage html

[testenv:clean]
deps = coverage
skip_install = true
commands = coverage erase

Depending on your project layout you might need extra configuration, see the working examples at https://github.com/
pytest-dev/pytest-cov/tree/master/examples for two common layouts.

20 Chapter 7. Tox

https://github.com/pytest-dev/pytest-cov/tree/master/examples
https://github.com/pytest-dev/pytest-cov/tree/master/examples

CHAPTER 8

Plugin coverage

Getting coverage on pytest plugins is a very particular situation. Because how pytest implements plugins (using
setuptools entrypoints) it doesn’t allow controlling the order in which the plugins load. See pytest/issues/935 for
technical details.

The current way of dealing with this problem is using the append feature and manually starting pytest-cov‘s
engine, eg:

COV_CORE_SOURCE=src COV_CORE_CONFIG=.coveragerc COV_CORE_DATAFILE=.coverage.eager
pytest –cov=src –cov-append

Alternatively you can have this in tox.ini (if you’re using Tox of course):

[testenv]
setenv =

COV_CORE_SOURCE=
COV_CORE_CONFIG={toxinidir}/.coveragerc
COV_CORE_DATAFILE={toxinidir}/.coverage

And in pytest.ini / tox.ini / setup.cfg:

[tool:pytest]
addopts = --cov --cov-append

21

https://github.com/pytest-dev/pytest/issues/935#issuecomment-245107960
https://tox.readthedocs.io/en/latest/

pytest-cov, Release 2.7.0

22 Chapter 8. Plugin coverage

CHAPTER 9

Markers and fixtures

There are some builtin markers and fixtures in pytest-cov.

9.1 Markers

9.1.1 no_cover

Eg:

@pytest.mark.no_cover
def test_foobar():

do some stuff that needs coverage disabled

Warning: Caveat

Note that subprocess coverage will also be disabled.

9.2 Fixtures

9.2.1 no_cover

Eg:

def test_foobar(no_cover):
same as the marker ...

23

pytest-cov, Release 2.7.0

9.2.2 cov

For reasons that no one can remember there is a cov fixture that provides access to the underlying Coverage instance.
Some say this is a disguised foot-gun and should be removed, and some think mysteries make life more interesting
and it should be left alone.

24 Chapter 9. Markers and fixtures

CHAPTER 10

Changelog

10.1 2.7.0 (2019-05-03)

• Fixed AttributeError: 'NoneType' object has no attribute 'configure_node'
error when --no-cov is used. Contributed by Alexander Shadchin in #263.

• Various testing and CI improvements. Contributed by Daniel Hahler in #255, #266, #272, #271 and #269.

• Improved documentation regarding subprocess and multiprocessing. Contributed in #265.

• Improved pytest_cov.embed.cleanup_on_sigterm to be reentrant (signal deliveries while signal
handling is running won’t break stuff).

• Added pytest_cov.embed.cleanup_on_signal for customized cleanup.

• Improved cleanup code and fixed various issues with leftover data files. All contributed in #265 or #262.

• Improved examples. Now there are two examples for the common project layouts, complete with working
coverage configuration. The examples have CI testing. Contributed in #267.

• Improved help text for CLI options.

10.2 2.6.1 (2019-01-07)

• Added support for Pytest 4.1. Contributed by Daniel Hahler and in #253 and #230.

• Various test and docs fixes. Contributed by Daniel Hahler in #224 and #223.

• Fixed the “Module already imported” issue (#211). Contributed by Daniel Hahler in #228.

10.3 2.6.0 (2018-09-03)

• Dropped support for Python < 3.4, Pytest < 3.5 and Coverage < 4.4.

25

https://github.com/pytest-dev/pytest-cov/pull/263
https://github.com/pytest-dev/pytest-cov/pull/255
https://github.com/pytest-dev/pytest-cov/pull/266
https://github.com/pytest-dev/pytest-cov/pull/272
https://github.com/pytest-dev/pytest-cov/pull/271
https://github.com/pytest-dev/pytest-cov/pull/269
https://github.com/pytest-dev/pytest-cov/pull/265
https://github.com/pytest-dev/pytest-cov/pull/265
https://github.com/pytest-dev/pytest-cov/pull/262
https://github.com/pytest-dev/pytest-cov/pull/267
https://github.com/pytest-dev/pytest-cov/pull/253
https://github.com/pytest-dev/pytest-cov/pull/230
https://github.com/pytest-dev/pytest-cov/pull/224
https://github.com/pytest-dev/pytest-cov/pull/223
https://github.com/pytest-dev/pytest-cov/issues/211
https://github.com/pytest-dev/pytest-cov/pull/228

pytest-cov, Release 2.7.0

• Fixed some documentation formatting. Contributed by Jean Jordaan and Julian.

• Added an example with addopts in documentation. Contributed by Samuel Giffard in #195.

• Fixed TypeError: 'NoneType' object is not iterable in certain xdist configurations. Con-
tributed by Jeremy Bowman in #213.

• Added a no_cover marker and fixture. Fixes #78.

• Fixed broken no_cover check when running doctests. Contributed by Terence Honles in #200.

• Fixed various issues with path normalization in reports (when combining coverage data from parallel mode).
Fixes #130. Contributed by Ryan Hiebert & Ionel Cristian Măries, in #178.

• Report generation failures don’t raise exceptions anymore. A warning will be logged instead. Fixes #161.

• Fixed multiprocessing issue on Windows (empty env vars are not passed). Fixes #165.

10.4 2.5.1 (2017-05-11)

• Fixed xdist breakage (regression in 2.5.0). Fixes #157.

• Allow setting custom data_file name in .coveragerc. Fixes #145. Contributed by Jannis Leidel & Ionel
Cristian Măries, in #156.

10.5 2.5.0 (2017-05-09)

• Always show a summary when --cov-fail-under is used. Contributed by Francis Niu in PR#141.

• Added --cov-branch option. Fixes #85.

• Improve exception handling in subprocess setup. Fixes #144.

• Fixed handling when --cov is used multiple times. Fixes #151.

10.6 2.4.0 (2016-10-10)

• Added a “disarm” option: --no-cov. It will disable coverage measurements. Contributed by Zoltan Kozma
in PR#135.

WARNING: Do not put this in your configuration files, it’s meant to be an one-off for situations where
you want to disable coverage from command line.

• Fixed broken exception handling on .pth file. See #136.

10.7 2.3.1 (2016-08-07)

• Fixed regression causing spurious errors when xdist was used. See #124.

• Fixed DeprecationWarning about incorrect addoption use. Contributed by Florian Bruhin in PR#127.

• Fixed deprecated use of funcarg fixture API. Contributed by Daniel Hahler in PR#125.

26 Chapter 10. Changelog

https://github.com/pytest-dev/pytest-cov/pull/195
https://github.com/pytest-dev/pytest-cov/pull/213
https://github.com/pytest-dev/pytest-cov/issues/78
https://github.com/pytest-dev/pytest-cov/pull/200
https://github.com/pytest-dev/pytest-cov/issues/161
https://github.com/pytest-dev/pytest-cov/pull/178
https://github.com/pytest-dev/pytest-cov/issues/161
https://github.com/pytest-dev/pytest-cov/issues/165
https://github.com/pytest-dev/pytest-cov/issues/157
https://github.com/pytest-dev/pytest-cov/issues/145
https://github.com/pytest-dev/pytest-cov/pull/156
https://github.com/pytest-dev/pytest-cov/pull/141
https://github.com/pytest-dev/pytest-cov/issues/85
https://github.com/pytest-dev/pytest-cov/issues/144
https://github.com/pytest-dev/pytest-cov/issues/151
https://github.com/pytest-dev/pytest-cov/pull/135
https://github.com/pytest-dev/pytest-cov/issues/136
https://github.com/pytest-dev/pytest-cov/issues/124
https://github.com/pytest-dev/pytest-cov/pull/127
https://github.com/pytest-dev/pytest-cov/pull/125

pytest-cov, Release 2.7.0

10.8 2.3.0 (2016-07-05)

• Add support for specifying output location for html, xml, and annotate report. Contributed by Patrick Lannigan
in PR#113.

• Fix bug hiding test failure when cov-fail-under failed.

• For coverage >= 4.0, match the default behaviour of coverage report and error if coverage fails to find the source
instead of just printing a warning. Contributed by David Szotten in PR#116.

• Fixed bug occurred when bare --cov parameter was used with xdist. Contributed by Michael Elovskikh in
PR#120.

• Add support for skip_covered and added --cov-report=term-skip-covered command line op-
tions. Contributed by Saurabh Kumar in PR#115.

10.9 2.2.1 (2016-01-30)

• Fixed incorrect merging of coverage data when xdist was used and coverage was >= 4.0.

10.10 2.2.0 (2015-10-04)

• Added support for changing working directory in tests. Previously changing working directory would disable
coverage measurements in suprocesses.

• Fixed broken handling for --cov-report=annotate.

10.11 2.1.0 (2015-08-23)

• Added support for coverage 4.0b2.

• Added the --cov-append command line options. Contributed by Christian Ledermann in PR#80.

10.12 2.0.0 (2015-07-28)

• Added --cov-fail-under, akin to the new fail_under option in coverage-4.0 (automatically activated
if there’s a [report] fail_under = ... in .coveragerc).

• Changed --cov-report=term to automatically upgrade to --cov-report=term-missing if there’s
[run] show_missing = True in .coveragerc.

• Changed --cov so it can be used with no path argument (in wich case the source settings from .coveragerc
will be used instead).

• Fixed .pth installation to work in all cases (install, easy_install, wheels, develop etc).

• Fixed .pth uninstallation to work for wheel installs.

• Support for coverage 4.0.

• Data file suffixing changed to use coverage’s data_suffix=True option (instead of the custom suffixing).

• Avoid warning about missing coverage data (just like coverage.control.process_startup).

10.8. 2.3.0 (2016-07-05) 27

https://github.com/pytest-dev/pytest-cov/pull/113
https://github.com/pytest-dev/pytest-cov/pull/116
https://github.com/pytest-dev/pytest-cov/pull/120
https://github.com/pytest-dev/pytest-cov/pull/115
https://github.com/pytest-dev/pytest-cov/pull/80

pytest-cov, Release 2.7.0

• Fixed a race condition when running with xdist (all the workers tried to combine the files). It’s possible that this
issue is not present in pytest-cov 1.8.X.

10.13 1.8.2 (2014-11-06)

• N/A

28 Chapter 10. Changelog

CHAPTER 11

Authors

• Marc Schlaich - http://www.schlamar.org

• Rick van Hattem - http://wol.ph

• Buck Evan - https://github.com/bukzor

• Eric Larson - http://larsoner.com

• Marc Abramowitz - http://marc-abramowitz.com

• Thomas Kluyver - https://github.com/takluyver

• Guillaume Ayoub - http://www.yabz.fr

• Federico Ceratto - http://firelet.net

• Josh Kalderimis - http://blog.cookiestack.com

• Ionel Cristian Măries, - https://blog.ionelmc.ro

• Christian Ledermann - https://github.com/cleder

• Alec Nikolas Reiter - https://github.com/justanr

• Patrick Lannigan - https://github.com/plannigan

• David Szotten - https://github.com/davidszotten

• Michael Elovskikh - https://github.com/wronglink

• Saurabh Kumar - https://github.com/theskumar

• Michael Elovskikh - https://github.com/wronglink

• Daniel Hahler - https://daniel.hahler.de

• Florian Bruhin - http://www.the-compiler.org

• Zoltan Kozma - https://github.com/kozmaz87

• Francis Niu - https://flniu.github.io

• Jannis Leidel - https://github.com/jezdez

29

http://www.schlamar.org
http://wol.ph
https://github.com/bukzor
http://larsoner.com
http://marc-abramowitz.com
https://github.com/takluyver
http://www.yabz.fr
http://firelet.net
http://blog.cookiestack.com
https://blog.ionelmc.ro
https://github.com/cleder
https://github.com/justanr
https://github.com/plannigan
https://github.com/davidszotten
https://github.com/wronglink
https://github.com/theskumar
https://github.com/wronglink
https://daniel.hahler.de
http://www.the-compiler.org
https://github.com/kozmaz87
https://flniu.github.io
https://github.com/jezdez

pytest-cov, Release 2.7.0

• Ryan Hiebert - http://ryanhiebert.com/

• Terence Honles - https://github.com/terencehonles

• Jeremy Bowman - https://github.com/jmbowman

• Samuel Giffard - https://github.com/Mulugruntz

• - https://github.com/MarSoft

• Alexander Shadchin - https://github.com/shadchin

30 Chapter 11. Authors

http://ryanhiebert.com/
https://github.com/terencehonles
https://github.com/jmbowman
https://github.com/Mulugruntz
https://github.com/MarSoft
https://github.com/shadchin

CHAPTER 12

Releasing

The process for releasing should follow these steps:

1. Test that docs build and render properly by running tox -e docs,spell.

If there are bogus spelling issues add the words in spelling_wordlist.txt.

2. Update CHANGELOG.rst and AUTHORS.rst to be up to date.

3. Bump the version by running bumpversion [major | minor | patch]. This will automatically
add a tag.

Alternatively, you can manually edit the files and run git tag v1.2.3 yourself.

4. Push changes and tags with:

git push
git push --tags

5. Wait for AppVeyor and Travis to give the green builds.

6. Check that the docs on ReadTheDocs are built.

7. Make sure you have a clean checkout, run git status to verify.

8. Manually clean temporary files (that are ignored and won’t show up in git status):

rm -rf dist build src/*.egg-info

These files need to be removed to force distutils/setuptools to rebuild everything and recreate the egg-info
metadata.

9. Build the dists:

python3.4 setup.py clean --all sdist bdist_wheel

10. Verify that the resulting archives (found in dist/) are good.

11. Upload the sdist and wheel with twine:

31

https://ci.appveyor.com/project/pytestbot/pytest-cov
https://travis-ci.org/schlamar/pytest-cov
https://readthedocs.org/projects/pytest-cov

pytest-cov, Release 2.7.0

twine upload dist/*

32 Chapter 12. Releasing

CHAPTER 13

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

13.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

13.2 Documentation improvements

pytest-cov could always use more documentation, whether as part of the official pytest-cov docs, in docstrings, or even
on the web in blog posts, articles, and such.

13.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/pytest-dev/pytest-cov/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

33

https://github.com/pytest-dev/pytest-cov/issues
https://github.com/pytest-dev/pytest-cov/issues

pytest-cov, Release 2.7.0

13.4 Development

To set up pytest-cov for local development:

1. Fork pytest-cov (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:your_name_here/pytest-cov.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

13.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

13.4.2 Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though ...

34 Chapter 13. Contributing

https://github.com/pytest-dev/pytest-cov
http://tox.readthedocs.io/en/latest/install.html
https://travis-ci.org/pytest-dev/pytest-cov/pull_requests

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

35

	Overview
	Installation
	Usage
	Documentation
	Coverage Data File
	Limitations
	Acknowledgements

	Configuration
	Caveats
	Reference

	Reporting
	Debuggers and PyCharm
	Distributed testing (xdist)
	load mode
	each mode

	Subprocess support
	If you use multiprocessing.Pool
	If you use multiprocessing.Process
	If you got custom signal handling
	If you use Windows

	Tox
	Plugin coverage
	Markers and fixtures
	Markers
	Fixtures

	Changelog
	2.7.0 (2019-05-03)
	2.6.1 (2019-01-07)
	2.6.0 (2018-09-03)
	2.5.1 (2017-05-11)
	2.5.0 (2017-05-09)
	2.4.0 (2016-10-10)
	2.3.1 (2016-08-07)
	2.3.0 (2016-07-05)
	2.2.1 (2016-01-30)
	2.2.0 (2015-10-04)
	2.1.0 (2015-08-23)
	2.0.0 (2015-07-28)
	1.8.2 (2014-11-06)

	Authors
	Releasing
	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Indices and tables

